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Abstract 

Sensorimotor transformations are nonlinear mappings of 
sensory inputs to motor responses. We explore here the possi- 
bility that the responses of single neurons in the parietal cortex 
serve as basis functions for these transformations. Basis func- 
tion decomposition is a general method for approximating 
nonlinear functions that is computationally efficient and well 
suited for adaptive modification. In particular, the responses of 
single parietal neurons can be approximated by the product 
of a Gaussian function of retinal location and a sigmoid func- 
tion of eye position, called a gain field. A large set of such 
functions forms a basis set that can be used to perform an 
arbitrary motor response through a direct projection. We com- 

INTRODUCTION 

The parietal cortex is thought to contribute to sensori- 
motor transformations. Located at the crossroads of four 
sensory systems-visual, auditory, vestibular, and somato- 
sensory-it projects to several frontal and premotor 
areas (Felleman &Van Essen, 1991;Andersen et al., 1990a; 
Blatt, Andersen, & Stoner, 1990). In humans, lesions of the 
parietal cortex often result in hemineglect, a syndrome 
characterized by reduced exploration of the hemispace 
contralateral to the site of the lesion. Patients with 
hemineglect have difficulties initiating eye or arm move- 
ments toward visual, auditory, or somatosensory stimuli 
(Heilman, Watson, & Valenstein, 1985). This deficit is par- 
ticularly clear in line-cancellation tests, in which the 
subject is asked to cross out short line segments uni- 
formly spread over a page. Although this task is easy for 
normal subjects, parietal patients typically fail to cross 
the lines on the side of the page contralateral to the 
lesion. 

In reaching for an object, or directing gaze toward a 
visual target, the brain must transform the sensory coor- 
dinates of the stimulus into motor coordinates, a point 
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pare this hypothesis with other approaches that are commonly 
used to model population codes, such as computational maps 
and vectorial representations. Neither of these alternatives can 
fully account for the responses of parietal neurons, and they 
are computationally less efficient for nonlinear transformations. 
Basis functions also have the advantage of not depending on 
any coordinate system or reference frame. As a consequence, 
the position of an object can be represented in multiple refer- 
ence frames simultaneously, a property consistent with the 
behavior of hemineglect patients with lesions in the parietal 
cortex. W 

illustrated in Figure 1. In the visual cortex, the position 
of the target is specified in eye-centered, or retinotopic, 
coordinates. The motor command, on the other hand, is 
in joint coordinates: the set of joint angles that would 
bring the hand to the corresponding spatial location. 

How does the brain perform such sensorimotor trans- 
formations? One possibility is that the task is decom- 
posed in a series of subtransformations in which the 
position of the target is remapped in various intermedi- 
ate frames of reference, such as head-centered and body- 
centered coordinates (see Fig. 1). This strategy predicts 
that the cortex should contain multiple representations 
of the target position in these intermediate frames of 
reference, each of them involving different neuronal 
populations. The influential model of spatial transforma- 
tions in parietal cortex by Zipser and Andersen (1988), 
and subsequent studies by the same group (Goodman & 
Andersen, 1990; Mazzoni & Andersen, 1995; Andersen, 
1995), were based on this assumption. 

Although it may be convenient to decompose a trans- 
formation into a series of intermediate remappings, as 
shown in Figure 1, this is not necessarily the most 
efficient solution nor the only way that biological sys- 
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Figure 1. Coordinate transform required to specffy an arm move- 
ment toward a visual target. The position of the target on the retina 
is specified in retinotopic coordinates. This position needs to be re- 
mapped in joint coordinates in order to move the arm to the corre- 
sponding spatial location. This transformation can be decomposed in 
a series of subtransformations in which the target position is re- 
coded in various intermediate frames of reference. 

tems can be organized. We propose, instead, an alterna- 
tive approach in which sensory inputs, including visual 
or auditory inputs as well as eye, head, and arm position 
signals, are encoded in a format suitable for generating 
motor commands. Our representation is based on the 
theory of approximation of nonlinear functions (Girosi, 
Jones, & Poggio, 1995). We show that the response of 
parietal neurons is consistent with this hypothesis. The 
resulting representation, called a basis function repre- 

sentation, does not encode the location of objects in one 
particular frame of reference. Instead, the stimulus is 
represented in multiple frames of reference simultane- 
ously by the same neuronal pool, a feature that could 
explain many aspects of hemineglect. 

In the first part of this paper, we show that sensori- 
motor transformations are typically nonlinear, a point 
that we illustrate with a few typical examples. In the 
second part, we propose that parietal neurons contrib- 
ute to these transformations by computing basis func- 
tions of their sensory inputs. We show that the responses 
of parietal neurons are consistent with this hypothesis 
and we describe the results of a simulation in which we 
demonstrate how the same group of basis function neu- 
rons can represent several frames of reference simulta- 
neously. Finally, in the last two sections, we show that 
encoding the location of an object in one frame of 
reference at a time, as suggested in Figure 1, using a map 
or a vectorial code, seems neither appropriate for sen- 
sorimotor transformations nor consistent with neuro- 
physiological data. 

Part of this work has been published in conference 
proceedings (Pouget & Sejnowski, 1995). 

Sensorimotor Coordination 

The pattern of muscle activity required to move a limb, 
or the body, to a specitic spatial location is a highly 
nonlinear function of the sensory inputs. Although the 
cortex is not believed to spec* patterns of muscle 
activation, it often uses nonlinear representations in the 
intermediate stages, even if the underlying transforma- 
tions are actually linear. 

Consider, for example, the visuo-somatosensory cells 
found in the premotor cortex, the putamen, and possibly 
the ventral intraparietal area (VIP) that have visual recep- 
tive fields anchored to the skin, in register with the 
somatosensory receptive field (Fogassi et al., 1992; Colby 
& Duhamel, 1993; Graziano & Gross, 1993; Graziano, Yap, 
& Gross, 1994). When the somatosensory receptive field 
is located on the face, the visual receptive field is in 
head-centered coordinates and its position in space must 
be independent of where the eyes are fixating. What 
type of computation could be involved in generating this 
receptive field from the retinotopic visual fields found 
in the early stages of the visual system? 

It might seem that this transformation is linear, since + 
calculating the head-centered location of an object, A, + 
from its retinal location, R, and the current eye position, 
-3 E, requires a simple vector addition (Groh & Sparks, 
1992; Andersen, 1995): 

This equation, however, is only linear in one dimen- 
sion, since in three dimensions, the geometry of rotation 
of a spherical body is nonlinear (Westheimer, 1957). 
Even if we consider this linear approximation-which is 
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reasonably accurate for angles less than 40"-other 
problems arise. Thus, visual receptive fields, whether in 
the visual system or premotor cortex, are typically lim- 
ited in size and are approximately bell-shaped. Conse- + quently, the brain does not have access to R as a list of 
numbers-the horizontal and vertical components-but + to a set of nonlinear functions of R. Likewise, a head-cen- + tered receptive field is not A itself, but a nonlinear 
function of Af Generating such head-centered Gaussian 
receptive fields from retinotopic gaussian receptive 
fields requires a nonlinear transformation. 

Other sensory remapping problems are formally iden- 
tical to this case. The generation of eye movements 
toward auditory and somatosensory targets requires the 
same type of transformation gay & Sparks, 1987; Groh & 
Sparks, 1992; Groh & Sparks, 1996; Pouget et al., 1993). 

In addition to the nonlinearities introduced by remap- 
ping the visual field with Gaussian-shaped receptive 
fields, the brain must also deal with a variety of nonlinear 
estimation problems. For example, inverse kinematics, 
the transformation from retinotopic to joint coordinates 
illustrated in Figure 1, and almost all aspects of arm move- 
ment control, require nonlinear mappings (Craig, 1955; 
Burnod et al., 1992). Nonlinear transformations are the 
rule rather than the exception in the nervous system. 

If the parietal cortex is involved in these transforma- 
tions, the spatial representations must be capable of 
approximating nonlinear functions, which provides an 
important computational constraint on the type of rep- 
resentations that can be used. One possibility, explored 
in the paper, is that parietal neurons compute basis 
functions of their sensory inputs. 

Gain Fields and Basis Functions 

A nonlinear function, such as ex, is typically represented 
in a computer by a Taylor series, a polynomial expansion 
that is simpler to compute. This is not the only way to 
approximate a nonlinear function. An alternative method 
is to express the function as a linear combination of 
sines and cosines weighted by numbers called Fourier 
coefficients. Because sines and cosines can be used to 
approximate a very large ensemble of nonlinear func- 
tions, they are called basis functions. There are many 
other types of basis functions. 

Two classes of basis functions, Gaussians and sigmoids, 
are especially promising candidates for matching physi- 
ological data. Their mathematical properties have been 
extensively studied (Casdagli, 1989; Moody & Darken, 
1989; Poggio & Girosi, 1990; Hornik, Stinchcornbe, & 
White, 1989; Baldi, 1991; Girosi, Jones, & Poggio, 1995), 
and they have been used to interpret the responses of 
single cells in the context of object recognition (Poggio, 
1990; Poggio & Edelman, 1990; Logothetis & Pauls, 1995) 
and distance approximations (Pouget & Sejnowski, 
1994). 

This basis function framework can also be used to 

interpret the response of gain-modulated neurons in the 
parietal cortex (see also Poggio, 1990). If a motor com- 
mand, M, is a nonlinear function of its inputs, it might be 
generated in the brain by a linear combination of basis + + 
functions of sensory, S, and posture signals, P, such as 
eye, head, and arm positions. 

where ci are coefficients that depend on the function, M, 
being computed (if the basis functions were sines and 
cosines, the ci's would be called Fourier coefficients). 

We propose that the responses of parietal neurons ++ behave like the basis functions, Bi(S,  P). From a com- 
putational perspective, there are several advantages in 
using basis functions for representing nonlinear transfor- 
mations in the parietal cortex. First, once the basis func- 
tions have been computed, the amount of additional 
computation needed to obtain a motor command is 
greatly reduced since any nonlinear function of the 
input is now only one linear combination away; that is, 
any nonlinear transformation can be obtained by a single 
projection. In a sense, the basis functions are closer to 
the output than a representation that contains separate 
populations of cells for ?and Pf~econd, the activity of 
the same neurons can be used to compute several func- 
tions, which could be used to drive several motor com- 
mands. Third, forming these basis functions during 
development can be accomplished in a largely unsuper- 
vised manner since the choice of basis function is inde- 
pendent of the output functions being computed 
(Moody & Darken, 1989). 

The responses of single neurons in the posterior pa- 
rietal cortex are consistent with this hypothesis. These 
neurons have a visual receptive field whose positions are 
fixed on the retina, but the amplitudes of the responses 
to visual stimuli are modulated by eye position (An- 
dersen, Essick, & Siegel, 1985). Figure 2A shows how the 
gain of the retinotopic receptive field of a cell changes 
with eye position. In Figure 2B, the circles indicate the 
responses of a single cell to a stimulus flashed in the 
middle of the receptive field while the monkey fixated 
nine different locations. The peak response appeared to 
vary linearly with eye position along a particular direc- 
tion, left and upward for the cell shown in Figure 2. This 
is called the gain field, and it corresponds to the recep- 
tive field of the cell for eye position. 

The response of a single cell, like the one shown in 
Figure 2, can be modeled by the product of a Gaussian 
function of retinal location with a sigmoid function of 
eye position. Figure 3 shows the correspondence be- 
tween the gain field and these idealized response func- 
tions. Both Gaussians and sigmoids are basis functions, 
and it can be shown that the product of two basis 
functions forms a basis function, but all combinations 
must be represented (see Appendix for a proof). 
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Figure 2. (A) Typical visual 
receptive field of a parietal 
neuron shown for two differ- 
ent gaze angles, e,. The retinal 
positions of the receptive 
fields do not vary with eye po- 
sition; only the gain of the re- 
sponse changes. @) Typical 
gain field of a parietal neuron. 
The circles show the re- 
sponses of a single cell to vis- 
ual stimulation in the center 
of the receptive field for eye 
fixations at nine different loca- 
tions. The diameter of each 
outer circle is proportional to 
overall activity, while the in- 
ner circle corresponds to vis~l- 
ally evoked activity (overall 
activity minus spontaneous ac- 
tivity). Eye fixation positions 

-40 -20 0 20 40 I I b 

Retinal Position (Deg) 0 e x  

. . 
were sampled on a grid with a 20" spacing, such that the fixation point was straight ahead for the central circle, and 20' up and 20" left for 
the upper left circle. The activity of this cell increased monotonically for eye positions located upward and to the left. This preferred direction 
is specific to each cell (adapted from Andersen et al., 1985; Andersen & Zipser, 1988). 

Such cells could be used to generate the skin-centered 
visual receptive fields of premotor cortex and putamen 
neurons (Fogassi et al., 1992; Colby & Duhamel, 1993; 
Graziano & Gross, 1993; Graziano, Yap, & Gross, 1994). 
Figure 4 shows a 3-layer network using basis function in 
the hidden layer to generate units with head-centered 
receptive fields in the output layer. (Skin-centered is 
equivalent to head-centered when the receptive field is 
located on the head.) 

The input layer consisted of a one-dimensional retino- 
topic map similar to that found in the early stages of the 
visual system, where neurons respond to visual stimuli 
in a limited region of the visual field. In addition, several 
input units encode the horizontal position of the eye, ex. 
In the output layer, units were organized in a one-dimen- 
sional head-centered map. They responded as a Gaussian 
function of ax, or, equivalently, a Gaussian function of rx 
+ ex [Eq. (I)]. 

In this one-dimensional case, the activity of all the 
units in the network can be plotted with respect to the 
input variables, namely, the retinal position of targets, rx, 
and eye position, ex. Examination of the plot for a typical 
output unit-such as the one shown on top of Figure 
4-confirms that the plot is not planar and that a head- 
centered receptive field is a nonlinear function of the 
input variables. These nonlinear functions can be gener- 
ated by a linear combination of the activities of hidden 
units like the idealized neurons showed in Figure 3. 

Figure 3. Response function obtained by multiplying a Gaussian of 
retinal location with a sigmoid of eye position (top). When sampled 
at three different gaze angles (thick lines on top graph), the visual re- 
ceptive field (bottom) shows the same gain modulation as found in 
the parietal cortex (Figure 2-A). 

Pouget and Sejnowski 225 



Head-Centered 's. 

Figure 4. Neural network for transforming a retinotopic map to a 
headcentered map. The input contains a retinotopic map of the vis- 
ual input and the output represents a headcentered map. The eye 
position units have a sigmoidal tuning to eye position and a range 
of thresholds. The function represented by the network is nonlinear, 
as illustrated by the fact that the response to rx and ex of the units 
in the output layer is clearly not a plane. This mapping could be im- 
plemented by hidden units that compute the product of a Gaussian 
of rx with a sigmoid of e,. Such units would provide basis functions 
of the input variables and would respond like gain-modulated neu- 
rons found in the parietal cortex. 

Note that the same units could be used to generate 
any other function of r, and ex. For example, the parietal 
cortex is believed to be involved in the control of sac- 
cadic eye movements toward visual targets. It projects to 
two structures, the superior colliculus and frontal eye 
field, in which many neurons show presaccadic activity, 
which might be due in part to the parietal input. The 
motor fields of these neurons are in oculocentric coor- 
dinates, which is geometrically equivalent to retinotopic 
coordinates (Sparks, 1991). A Gaussian retinotopic motor 
field is another example of a nonlinear function of r, 
and ex-in this particular case, the function depends 
only on rx-and as such it could be generated by a linear 
combination of parietal neurons' activity. 

Therefore, the responses of such basis function cells 
could be used to control several behaviors simultane- 
ously, such as reaching, and moving the eyes. We demon- 
strate this point in the next section, in which we 
generate a Gaussian head-centered receptive field and a 
Gaussian retinotopic receptive field by a linear combina- 
tion of the activities of basis function units. The output 

unit with a retinotopic receptive field could correspond 
to a presaccadic neuron in the superior colliculus 
(Sparks, 1991), whereas the one with a head-centered 
receptive field would be similar to the premotor cortex 
or VIP neurons with skin-centered receptive field, which 
are believed to be involved in reaching (Fogassi et al., 
1992; Colby & Duhamel, 1993). 

Simulations 

The accuracy with which a sum of basis functions can 
approximate a transformation depends on the number 
of basis functions used. Perfect accuracy is only possible 
in the limit as the number of basis functions becomes 
infinite, but good approximations can be obtained to 
many functions with a reasonably small number (Girosi, 
Jones, & Poggio, 1995). We illustrate this point by show- 
ing how gain-modulated units, similar to the neurons 
found in the parietal cortex, can be used to generate two 
output functions: a head-centered and a retinotopic re- 
ceptive field. 

The model used 121 gain-modulated units, corre- 
sponding to the hidden units in Figure 4, whose re- 
sponse functions were computed by multiplying 
Gaussian retinal receptive fields with sigmoid functions 
of eye position: 

where hi is the activity of unit i. The peaks of the 
Gaussians, r,,, were spread uniformly between -60" and 
60" in increments of 12". The standard deviation of the 
Gaussian, o, was fixed at 18". This corresponds to a radius 
of 25", defined as the distance from the peak corre- 
sponding to 37% of maximum activity. An average radius 
of 22" has been reported in area 7a (Andersen, Essick, & 
Siegel, 1985). The inflection points of the sigmoids, e,,, 
were also uniformly spread between -40" and 40" in 
steps of 8". The slope factor, T, was set at 8". Four typical 
units used in the simulations are shown at the bottom 
of Figure 5. 

In a second series of simulations, we used a different 
set of functions, which were obtained by multiplying a 
Gaussian of r, by a piecewise linear function of ex 
(similar piecewise linear functions of e, were used in the 
Zipser and Andersen model, 1988): 

These functions look similar to the previous ones except 
that activity does not saturate at a maximum level. The 

226 Journal of Cognitive Neuroscience Volume 9, Number 2 



Head-Centered Retinotopic 

Figure 5. Approximating a head-centered and a retinotopic Gauss- 
ian receptjve field by the use of the same gain-modulated input 
units. on$ four units are shown, but the approximations were ob- 
tained with 121 units. 

/ 

goal of this second model was to demonstrate that satu- 
ration at zero is sufficient as long as the e,, are spread 
over the range of all possible eye positions. 

The two output functions were Gaussian functions of 
a, and r, respectively, with a standard deviation, o, of 
18". The peak in both cases was at ax = r, = 0. A wide 
range of peak position could have been approximated 
equally well by the set of basis functions. 

We used a supervised optimization procedure for de- 
termining the weights wi between the basis functions 
and output unit. The optimization procedure, called the 
delta rule (Widrow & Hoff, 1960), minimized the square 
error between our estimation, o, and the actual function, 
o* , over all possible examples,p: 

M 

E = C (oj - 0$ (6) 

P=l 

where 

This procedure was used only to find such a set of 
weights and not to model the actual process that might 
be used in the brain to determine these weights, al- 
though the rule we used is quite simple and could be 
easily implemented in neural hardware. Even simpler 
correlation rules can be used, as demonstrated by Salinas 
and Abbott (1995). 

The training set was composed of 441 pairs of retinal 
position, r, and eye position, ex, selected from 21 differ- 
ent retinal locations within the range -40" and 40°, and 
as many eye positions between -20" and 20". Weights 

were adjusted until the approximation was, on average, 
within 3% of the actual values. Figure 5 shows the result- 
ing approximation for a head-centered and a retinotopic 
receptive field when using products of Gaussians and 
sigmoids. Identical results (not shown) were obtained 
when using the second type of basis functions. 

One might have thought that recovering a retinotopic 
receptive field from the activity of basis function units 
is trivial since these units already have a Gaussian reti- 
notopic receptive field. However, it is worth noting that 
the retinotopic receptive field was recovered with the 
same type of transformation as the one used for the 
head-centered receptive field, namely a linear transfor- 
mation. Therefore, the two frames of reference coexist 
in the basis function representation on equal footing. An 
infinite number of potential frames of reference are 
implicit in this representation, and any of them could be 
extracted with only a single linear projection. 

Note that the basis function units contain multiple 
frames of reference, but the output units extract only the 
coordinates needed for the behavior they control. There- 
fore, a given behavior has access to only one frame of 
reference. In the case of eye movements, this model 
assumes that the oculomotor coordinates are retino- 
topic. Consequently, our model cannot deal with double 
saccade toward remembered targets, a task that would 
require some form of head-centered coordinates. How- 
ever, this problem can be easily fixed by using a moving 
hill mechanism like the one proposed by Droulez and 
Berthoz (1991), which is known to solve the double- 
saccade paradigm. 

Finally, the ability of the basis function network to 
generate any nonlinear function in the output stage is a 
defining characteristic of this representation. Had the 
hidden units in the network been linear, a nonlinear 
function could not have been well approximated by a 
linear combination of the hidden units. 

Response Properties Required by Basis Function 
Representations 

For mathematical convenience, we used basis functions 
that were the products of Gaussian with sigmoid or 
linear-rectified functions. Few neurons in the parietal 
cortex have response functions that fit perfectly with 
these functions. These idealized responses are not 
strictly required, however, but there are at least two 
necessary conditions that must be met: 

+ + 
1. The selectivities to R and E should interact non- 

linearly. 
2. The visual receptive fields as well as the gain fields 

should be nonlinear functions of ?and Ef 
These conditions are not sufficient, in a mathematical 

sense, to insure that the functions are basis functions, 
but a very large number of functions satisfying these 
requirements do form basis sets (see Hornik et al., 1989; 
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and Girosi et al., 1995). We haverconfirmed this point 
empirically, through computer simulations, by using a 
wide variety of such functions. 

Two common classes of functions violate one of these 
-3 conditions: sums of linear or nonlinear functions of R 

and Efand two independent sets of functions of ?and 
functions of Ef1t is shown in the Appendix that neither 
of these two classes of functions forms a basis set, 
thereby demonstrating that the two conditions above are 
indeed necessary to obtain a basis set (see Part 2).This 
is related to the fact that basis functions of several 
variables must combine these variables in such a way 
that they are no longer linearly separable. 

This result entails that several potentially interesting 
functions cannot be used for a basis set, including a 
representation in which separate populations of cells are 
dedicated to ?and $as in the input layer of the network 
in Figure 4. Nor would a representation using units + + 
whose responses were linear in R or E, such as Gaussians 
of ?multiplied by linear functions of ?(Andersen, Es- 
sick, & Siegel, 1985). 

Another example of function that does not constitute 
a basis set is the set formed by functions that are the + + sums of one Gaussian of R and one sigmoid of E. This 
might appear counterintuitive since this set is similar to 
the one used in the simulations: the products of Gaus- 
sians and sigmoid functions. However, since the set is 
made up of sums of Gaussians and sigmoids, linear com- 
binations of these functions can only produce a function 
which is itself a sum of several Gaussians and sigmoids. 
The resulting function can therefore be decomposed + 
into the sum of one function of R plus one function of 
Ef Most functions of ?and Ef such as eR'E, cannot be 
decomposed into a sum of two functions. 

It is therefore essential to establish that the responses 
of a large percentage of parietal neurons are consistent 
with the two criteria above. Without a theory of basis 
functions, there would be no reason to test for these 
properties. 

Condition 1: Nonlinear Interaction 

Determining the exact form of the interaction between 
retinal and eye position selectivities for parietal neurons 
requires a complete mapping of the visual receptive field 
for several fixation positions. Andersen et al. (1985) have 
performed this analysis on seven cells only, but for each 
of these cells, they found that the response is best 
modeled by a multiplication between selectivities. This 
is quite clear for the four cells shown in Figure 6. If the 
cell simply added eye position with the visual input, the 
entire retinal receptive field should move upward or 
downward with change in eye position. Instead, the 
firing rate of the cell is modified most at the peak 
response, and responses close to zero are barely af- 
fected. 

Additional evidence can be obtained by examining the 

Retinotopic Position (") 

Figure 6. Four typical visual receptive fields of parietal neurons. 
Each receptive field is shown for several gaze angles (adapted from 
Andersen et al., 1985). 

Figure 7. Four typical gain fields of parietal neurons. Notice that 
gain fields (B) and (C) show clear signs of saturation. See Figure 2B 
for explanation of circles (adapted from Andersen et al., 1988). 

covariation of visually evoked activity (black circle in 
Fig. 7) and eye position activity (white ring) in the 
gain fields. Andersen and Zipser (1988) performed this 
analysis on 78% of the gain-modulated neurons recorded 
in area 7a and the lateral intraparietal area (LIP). They 
found that of these, 43% had gain fields consistent with 
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a multiplicative interaction, but not with a simple addi- 
tion (Andersen & Zipser, 1988, Fig. 13B). For an addi- 
tional 28% of the cells, the interaction might be even 
more complex. Hence, the gain field depicted in Fig- 
ure 7B cannot be explained by a simple multiplicative 
interaction. The fact that the visually evoked activity 
decreased as the eyes moved up and to the right indi- 
cates that eye position alone is sufficient to saturate the 
response of the cell at maximum firing rate. Andersen 
and Zipser (1988) concluded that such responses were 
consistent with a sigmoid activation function for the gain 
field. The remaining 29% of the cells are consistent with 
both a linear or a nonlinear interaction, and more mea- 
surements would be required to decide. We conclude 
that the responses of at least 43 + 28 = 71% of the 
parietal neurons tested satisfied the first requirement: 
the visual and eye position selectivities interacted non- 
linearly. 

Condition 2: Nonlinear Dependence 

Visual receptive fields of parietal neurons are typically +' smooth and nonlinear functions of R. Gaussian functions 
or sums of Gaussians provide good models of their 
profile, as seen in Figure 6. The eye position selectivity, 
however, which is called the gain field (Figure 2B), ap- 
pears to be a linear function of 2which would not 
satisfy the second condition. Since our model requires 
nonlinear basis functions, we need to examine more 
closely the gain fields of parietal neurons to see if there 
are nonlinearities. 

Andersen and Zipser (1988) and Andersen et al. 
(199Ob) performed a linear regression analysis on a large 
sample of parietal neurons. This analysis revealed that 
about 40% of the cells had a planar gain field, another 
40% had a planar component in their gain field (they 
were not purely planar but were monotonically increas- 
ing in one direction of space), and the final 20% had 
nonplanar gain fields (Andersen & Zipser, 1988; An- 
dersen et al., 1990b; see Figure 7 for four examples). 
Although linear regression analysis revealed that about 
80% of the gain fields were either planar or have a planar 
component, a closer analysis showed that this percent- 
age does not necessarily entail that most cells are really 
linear. 

Figure 8 illustrates that sampling a sigmoid at nine 
symmetrical positions results in a gain field that would 
appear to be planar if tested with a linear regression 
analysis. If the inflection point of the sigmoid is not 
exactly at ex = e, = 0, the resulting gain field would look 
less linear, but would still be monotonic, and a linear 
regression analysis would find that there is a statistically 
significant linear component. Therefore, even though 
80% of the neurons had gain fields that were either 
planar or had a planar component, this is also consistent 
with sigmoidal gain fields. The remaining 20% classified 
as nonplanar had a peak of activity at one of the nine 

Figure 8. Examples of two sigmoid functions sampled at nine eye 
positions (crosses) showing that they are nearly planar gain fields. 

sampling positions (Andersen & Zipser, 1988; Andersen 
et al., 1990b). These might be just as useful as the others 
and are consistent with the second condition above. 

Evidence for saturation of the response of a neuron at 
a minimum or maximum firing rate within the working 
range of eye positions or retinal locations could distin- 
guish between genuinely planar tuning and sigmoidal 
gain fields. Linear tuning (also called a vectorial code, as 
shown later) requires that saturation should not occur 
within the physical limits of eye position (around -1-50"). 

Response saturation was tested by examining data 
from neurons in parietal cortex. Saturation at maximum 
firing rate is difficult to demonstrate because it requires 
a large number of measurements. Saturation at zero, on 
the other hand, can be estimated by linearly extrapolat- 
ing the gain field of each cell beyond the experimental 
sample points to determine which eye position would 
silence the cell. This is only an estimation, however, since 
we can only surmise that cells keep responding linearly 
outside of the range of eye position tested. 

We performed this analysis on the gain fields of 174 
cells recorded in the parietal area 7a by Andersen, Essick, 
and Siegel, 1985. An example of one of these gain fields 
is shown in Figure 2B. Gain fields were fitted with planes 
such that the activity, a ,  of each cell was approximated 
with: 

where a, p, and y were obtained with a linear regression 
analysis (see Andersen & Zipser, 1988 for more details 
on this procedure). The minimum eye deviation from the 
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straight-ahead for which the cell would stop firing is 
given by: 

Figure 9 shows the measured distribution of 8 for 
neurons in parietal cortex. Although the distribution is 
not uniform, many cells saturate within f 40°, the work- 
ing range of normal saccadic eye movements. 

The two large peaks on the sides are for cells that 
intersect beyond f80°. These cells might be either true 
linear cells or cells with sigmoidal tuning that are near 
saturation at maximum firing rate around f20°. Addi- 
tional measurements are needed to distinguish between 
these two possibilities. 

The data in Figure 9 provide clear evidence of satura- 
tion at zero firing rate within working range of eye 
positions. It is not yet possible to conclude, though, that 
the tuning to eye position is sigmoidal since we do not 
have enough data to demonstrate saturation at maximum 
firing rate. 

A recent study by Squatrito and Maioli (1996) suggests 
that saturation at the maximum firing rate can occur. 
They reported that the tuning of pure eye position cells 
in area 7a-cells responding to eye position only-is 
best described by sigmoidal functions. Since these cells 
probably provide the eye position signal to the gain- 
modulated visual cells in these areas, the resulting gain 
fields may reflect the tuning properties of these pure eye 
position cells. 

Short of concluding that the gain fields are sigmoidal, 
we can still conclude that they are nonlinear within the 

Figure 9. Histogram of the gain field 0, of 174 cells recorded in 
area 7a (data from Andersen, Errick, & Siegel, 1988). As illustrated in 
the inset, 0 was defined as being the smallest eye deviation from 
straight ahead that would silence the cell. 

Map Representation 

Figure 10. A spatial representation using basis functions. Units 
have a Gaussian retinal receptive field multiplied by a sigmoid of 
eye position. For each retinal location, a small population of units 
represents all possible gaze angles. The spatial location of an object 
is represented by patterns of activity in this map. 

normal range of eye positions. We have demonstrated by 
simulation that units with piecewise linear gain fields 
that saturate at zero ("hinge" units) produce good esti- 
mates of nonlinear mappings. 

The receptive field properties of parietal neurons are 
therefore broadly consistent with our basis function hy- 
pothesis. The schematic view in Figure 10 shows basis 
function units for all possible combinations of retinal 
and eye position selectivities; any function of these in- 
puts can be computed as a weighted sum of this basis 
set. 

COMPARISON WITH OTHER 
REPRESENTATIONS 

If the brain decomposes a coordinate transformation 
into a series of subtransformations in which the position 
of an object is remapped in various frames of reference 
(see Figure I), then there should exist multiple repre- 
sentations of object position, each of them encoding the 
location of an object in some frame of reference, such 
as head-centered coordinates. The location of an object 
relative to the head is a vector; that is, we can represent 
the location of an object with respect to an origin fixed 
on the head. There are many ways to represent a vector. 
The two most common types of distributed repre- 

\ sentation for vectors are computational maps (Knudsen, 
du Lac, & Esterly, 1987) and vectorial codes (Soechting 
& Flanders, 1992; Goodman & Andersen, 1990; Touretzky, 
Redish, &Wan, 1993). 

Several brain structures use two-dimensional maps of 
neurons to represent vectors, including the retinal posi- 
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Figure 11. Computational map for the headcentered location of an + 
object, A. Each unit responds to a limited range of a, and ay with a 
Gaussian tuning. 

tion of visual stimuli in area V1 and the direction and 
amplitude of the next saccadic eye movement in the 
superior colliculus (Lee, Rohrer, & Sparks, 1988). The 
parietal cortex may, in a similar manner, represent the 
head-centered location of an object in a two-dimensional 
map (see Fig. 11). Each neuron in the map would dis- 
charge for a limited range of values of a, and ay so that 
their receptive fields would be fixed in head-centered 
coordinates. When the head and body are fixed, neurons 
in such a map would respond to visual stimulation at a 
particular location in space, regardless of eye position. 

There is preliminary evidence that some bimodal neu- 
rons in the ventral intraparietal area (VIP) might use 
such a code (Colby & Duhamel, 1993). Outside of VIP, 
however, only a few cells have head-centered receptive 
fields (Galletti, Battaglini, & Fattori, 1993) and it is gener- 
ally believed that this kind of representation is not pre- 
dominant (Andersen, 1989). 

Vectorial Representation 

The components of a two-dimensional vector are typi- 
cally the projections of the vector along the horizontal 
and vertical axes. The choice of the axes is, however, 
arbitrary. The same two-dimensional vector can be rep- 
resented by its projection on any pair of axes as long as 
they are independent (see Fig. 12). The parietal cortex + could encode the head-centered position of object,A, by 
projections along vectors, so that the firing rate of a + neuron would report the projection of A along its pre- 
ferred direction. Then the activity, o, of a neuron can be 
modeled as: 

Figure 12. Vectorial representation for the headcentered location + + 
of an object, A. Each neuron computes the projection of A along its 
preferred direction (central arrows). As a consequence, the tuning 
curve for a, and ay is planar, whereas the tuning curve to 8 (the an- + gle between A and the cell's preferred direction) is a sine function. 

where, 0 is the angle between the pd+centered posi- 
tion of the object ?and the vector W,. W, is called the 
preferred direction of the cells because the activity is +' maximum whenever 0 = 0; that is, when A points in the + 
same direction as W,. This representation predicts that 
neurons should have a cosine tuning to the direction of 
the head-centered location of object. Hence, if an object 
is moved in the visual field along a circle centered on 
the point of fixation, the response of the neuron should 
follow a cosine tuning function. 

Cosine tuning responses have been reported in the 
motor cortex for the direction of hand movement, sug- 
gesting that the motor cortex uses a vectorial code for 
the direction of hand movement in extrapersonal space 
(Georgopoulos et al., 1989; but see Sanger, 1994). The 
same scheme has been also used by Goodman and An- 
dersen (1990), and Touretzky et al. (1993) to model the 
encoding of head-centered position of objects in the 
parietal cortex. Touretzky et al. (1993) called their repre- 
sentation a sinusoidal array to refer to the cosine tun- 
ing of the units. 

Neurons in the parietal cortex do not receive directly 
the head-centered position of objects. Instead, they re- 
ceive signals related to the retinotopic position of object, + + R  and the current eye position, E. Upon substituting 4 A from Eq. (1) in Eq. (lo), the response of the unit to 
$and $is: 

jT + + -+T+ jT-4 o =  W , ( R + E ) -  W,R+ WaE (1 1) 

This equation is linear in $and Efwhich leads to three 
important requirements regarding the tuning of parietal 
neurons to the retinal location of the object and the eye 
position, 
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Response Properties Required by Vectorial 
Representations 

1. The visual and eye position receptive fields of pa- 
rietal neurons should be planar. + + 2. The selectivities to R and E should interact linearly. 

3. The preferred direction for retinal location and eye 
position should be identical. 

The first requirement suggests that the visual recep- 
tive field of a neuron should cover the entire visual field 
and the response to a stimulus should linearly increase 
in one direction of space. The direction of maximum 
increase is called th3 preferred direction, and it is equiva- 
lent to the vector Wa in Eq. (1 1). This stands in contrast 
to the typical visual receptive field found in early visual 
areas. In V1, for example, receptive fields are typically 
Gaussian with a half-width of about 0.5" or less. 

The second requirement arises because of the additive 
interaction between the eye position signal and retinal 
contribution to the overall activity in Eq. (1 1). 

The third requirement is a consequence of the fact 
tqat ?and ?in Eq. (1 1) are multiplied by the same vector 
Wa that defines the preferred direction. 

In the next section, these three requirements are com- 
pared to available neurophysiological recordings of pa- 
rietal neurons. Neurons are intrinsically nonlinear and it 
would be unreasonable to expect them to have perfectly 
linear responses. Furthermore, as we have emphasized 
before, Eq. (1) is only an approximation (Westheimer, 
1957). It is close to the right function for angles less than 
40"-the range of angle typically used in experiments- 
but the differences are sufficient to introduce slight + + 
nonlinearities in the tunin to R and E, even if the cell 3 
is responding linearly to A. 

The key question is whether the nonlinearities are 
large and functionally significant for the cortex or 
whether they are small irrelevant deviations from linear 
responses. 

Match Between the Vectorial Representation and 
Parietal Cortex 

The receptive fields of neurons for eye position are 
formally equivalent to their gain fields, 80% of which are 
linear or contain a linear component in the parietal 
cortex (Andersen & Zipser, 1988; Andersen et al., 1990b). 
This would therefore appear to be consistent with the 
first prediction of the vectorial hypothesis. However, 20% 
are nonlinear, and, as discussed above, the other 80% may 
be better described by sigmoids as some of these show 
clear sign of saturation. 

Visual receptive fields in the parietal cortex are not 
even approximately planar, as shown in Figure 6. They 
are typically bell-shaped, sometimes with multiple peaks 
(Andersen et al., 1990a). Only a small fraction of parietal 
neurons have extremely large receptive fields that cover 
almost the entire visual field, as predicted for a vectorial 

232 Journal of Cognitive Neuroscience 

code. On average the receptive field diameters are about 
44" in diameter, which is large when compared to earlier 
visual areas, but still well under the full extent of the 
visual field (180") (Andersen et al., 1990a). 

The second requirement concerns the interaction be- 
tween the retinal and eye position selectivities. As re- 
ported by Andersen et al. (1985) eye position has a 
multiplicative effect on the visual response of parietal 
cells, a nonlinear interaction that is incompatible with a 
vectorial code. 

The third prediction made by the vectorial hypothesis 
regards the visual and eye position preferences of single 
cells. The only two cells for which both the visual recep- 
tive field and the gain field have been published have 
opposite preferred directions for retinal and eye position 
(see Figs. 1 and 6 in Andersen & Zipser, 1988). Clearly 
more data are needed on the correlation between the 
preferred eye and retinal position. 

In conclusion, the experimental data do not appear to 
be fully consistent with the predictions of the vectorial 
code. The visual receptive fields, in particular, are 
strongly nonlinear. It is still possible, however, that these 
nonlinearities are averaged out in subsequent stages of 
processing in the cortex so that the net result is a linear 
mapping. Most sensorimotor mappings are nonlinear, 
but, as we argue in the Discussion, there may be par- 
ticular tasks for which a linear mapping is required. 

DISCUSSION 

The fundamental assumption underlying this paper is 
that spatial representations can be best understood from 
the perspective of sensorimotor transformation. We pro- 
pose that the role of spatial representations is to code 
the sensory inputs and posture signals in a format that 
simplifies subsequent computation, particularly in the 
generation of motor commands. This can be achieved by 
using basis function neurons that reduce the nonlinear 
transformations involved in sensorimotor coordination 
to linear mappings. 

Available neurophysiological data are consistent with 
this hypothesis. A neuron with a restricted visual recep- 
tive field modulated as a monotonic function of eye 
position can be modeled by a product of a Gaussian and 
a sigmoid. Since functions defined as the products of 
Gaussians and sigmoids form basis functions, this repre- 
sentation can be used to approximate any nonlinear 
functions of the input variables. 

There are two major advantages in reducing the com- 
plexity of sensorimotor transformations with basis func- 
tions. First, it simplifies learning since the first layer of 
weights is fixed and only a linear mapping from the 
hidden layer to the output layer needs to be learned. A 
simple learning rule, such as the Widrow-Hoff rule used 
here, or even hebbian mechanisms (Salinas & Abbott, 
1995) could suffice. Second, since the nonlinearities are 
computed at the level of the basis function units inde- 
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pendently of the eventual output, the resulting repre- 
sentation is versatile, in that it contains multiple frames 
of reference and can be used to control several behav- 
iors simultaneously. 

In contrast, previous attempts to characterize spatial 
representations have emphasized linear encoding 
schemes, such as the vectorial code (Mazzoni & An- 
dersen, 1995; Touretzky, Redish, & Wan, 1993), in which 
the position of the object is encoded in one particular 
frame of reference. We have shown that this linear rep- 
resentation is not fully consistent with experimental data 
from the parietal cortex and is not suitable for nonlinear 
function approximation. Linear representations are, how- 
ever, computationally interesting for other operations, 
such as vector rotation. Regions of the brain more spe- 
cialized for navigation, such as the hippocampus, may 
use such a scheme (Touretzky, Redish, & Wan, 1993). 

Comparison with the Zipser and Andersen 
Network Model 

Zipser and Andersen were the first to provide a network 
model of the parietal cortex (Zipser & Andersen, 1988). 
Their feedforward network was trained with back-propa- 
gation to compute the position of an object in head-cen- 
tered coordinates. The inputs were similar to those in 
Figure 4, but the output was trained to represent the 
head-centered position of the stimulus with either a vec- 
torial code or a map output-the latter case is illustrated 
in Figure 4. This model made an important contribution 
toward understanding how neurons in the parietal cor- 
tex are used to control behavior, but the nature of the 
representations found in the hidden layer remained elu- 
sive. The analysis presented here provides a conceptual 
framework for interpreting the hidden representations 
in the Zipser and Andersen network. This framework can 
be used to understand why parietal lesions lead to a 
neurological deficit such as hemineglect (Pouget & Se- 
jnowski, 1996b; Pouget & Sejnowski, 1996a). 

Previous approaches have focused on networks with 
a vectorial output (Goodman & Andersen, 1990; Mazzoni 
& Andersen, 1995). In this special case, the overall trans- 
formation performed by the network is linear and the 
hidden layer uses a vectorial code for the head-centered 
locations of the object (Goodman & Andersen, 1990). We 
extend this analysis to the map output, a case that may 
be particularly relevant for parietal cells given the recent 
finding of neurons with head-centered receptive fields 
in the premotor cortex (Fogassi et al., 1992; Graziano, 
Yap, & Gross, 1994) and the nonlinear nature of sensori- 
motor transformations in general. Our approach high- 
lights those aspects of the responses of single parietal 
neurons that are computationally critical for sensorimo- 
tor transformations, such as the nonlinearities found in 
the retinal and eye position selectivities (particularly in 
the eye position gain fields) and the nonlinear interac- 
tions between them. 

An important difference, however, between basis func- 
tions and the Zipser and Andersen network is that the 
hidden unit representation produced by back-propaga- 
tion is specific for the training that was used to create 
the network, whereas the basis function representation 
is independent of the eventual output. The price paid for 
this versatility is the potentially large number of units 
that may be needed, since many more units are required 
for a basis function network than for a specialized back- 
propagation network. 

Modularity in sensorimotor Coordination 

It is generally believed that sensorimotor coordination 
involves parallel modules, each dedicated to a particular 
transformation, such as moving the eye toward a visual 
target, with each of them embodying its own set of 
coordinates (see Stein, 1992, for a review). Neurophysi- 
ological data from the parietal cortex suggest basis func- 
tion representations in which several frames of 
reference are encoded simultaneously by the same 
neuronal pool. Theoretically, it is possible to collapse all 
the intermediate steps shown in Figure 1 into a single 
representation using basis functions spanning all possi- 
ble combinations of sensory and posture signals. This 
would provide a representation that could perform any 
transformation, such as from visual to joint coordinates, 
in one step and that could be used for all behaviors. In 
a sense, basis functions implicitly contain all frames of 
reference at once. In an ideal basis function repre- 
sentation, there would be no need to have parallel mod- 
ules for each transformation. 

A single basis function representation may, however, 
demand too many neurons since the number of localized 
basis functions needed to evenly cover an input space 
increases exponentially with the number of dimensions. 
Thus, as more signals need to be combined, such as 
retinal position, eye position, head position, auditory, 
vestibular, and somatosensory inputs, the number of neu- 
rons required eventually exceeds those available, a prob- 
lem called the "curse of dimensionality." 

How can the number of neurons in a basis function 
representation be minimized? If the repertoire of trans- 
formations and the number of output functions is lim- 
ited, then there is no need to cover the input space with 
basis functions evenly and the parietal cortex can selec- 
tively span the input space to achieve greater efficiency 
(Moody & Darken, 1989; Sanger, 1991). There is evidence 
that some variables are not represented independently 
in parietal cortex. For example, the response of a neuron 
in parietal cortex to head position may not be inde- 
pendent of its response to eye position, but these are 
often correlated along a particular direction in space 
that is specific to each neuron. This implies that the 
transformations computed downstream from the parie- 
tal cortex do not need to distinguish explicitly between 
head and eye position. 
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Even when the dimension of the input space can be 
reduced, a single representation might be cumbersome. 
A compromise between extreme modularity (one mod- 
ule for each frame of reference) and multipurpose basis 
functions is possible. Sensorimotor transformations 
might be decomposed in several steps, whether sequen- 
tially or in parallel, but each of these intermediate trans- 
formations may involve basis function modules, instead 
of a single reference frame. Each of these modules would 
contain two or three frames of reference and, as such, 
could be involved in several types of behavior, thereby 
greatly facilitating crosstalk and coordination. Our model, 
then, can be applied to each module, or cortical area, 
individually. 

Predictions for Hemineglect 

The ability of basis functions to support multiple refer- 
ence frames can be tested. One strong prediction is that 
hemineglect resulting from lesions in the parietal cortex 
should not be confined to a particular frame of refer- 
ence. Recent studies of parietal patients are consistent 
with this conclusion (Ladavas, 1987; Calvanio, Petrone, & 
Levine, 1987; Driver & Halligan, 1991; Behrmann & 
Moscovitch, 1994). The experiments of Ladavas (1987) 
and Calvanio et al. (1987), for example, show that the 
deficit is both retinotopic and environmental. Our expla- 
nation reconciles these observations with the properties 
of single cells in the parietal cortex. 

We tested this explanation of hemineglect by lesion- 
ing our basis function model and comparing the pattern 
of breakdown with deficits reported in patients with a 
variety of parietal lesions. Preliminary results from our 
simulations indicate strong similarities between the be- 
havior of our model and observations on patients with 
hemineglect (Pouget & Sejnowski, 1996b; Pouget & Sej- 
nowski, 1996a). 

Predictions for Visuo-Motor and Perceptual 
Adaptation Experiments 

Human subjects wearing visual prisms can learn in fewer 
than 20 trials to reach accurately for a visual target. In a 
recent study, Ghahramani, Wolpert, and Jordan (1995) 
investigated the pattern of generalization after prism 
adaptation to one spatial location. Their results suggested 
that adaptation takes place in Cartesian space rather 
than joint coordinates. The frame of reference of this 
Cartesian space, however, could not be determined from 
their experiments. 

It is conceivable that learning takes place in body- 
centered coordinates. Alternatively, if basis function neu- 
rons are involved in these experiments, the adaptation 
might occur in the space defined by the basis functions, 
a space whose axes are retinal location and eye position. 
This would predict that manipulation of gaze angle 
should affect the pattern of generalization in the 
Gharahmani et al. (1995) experiment, even when the 

position of the target is kept fixed in body-centered 
coordinates. 

The basis function framework also predicts that eye 
position could similarly influence perceptual adaptation 
experiments. A motion after-effect study by Mayhew 
(1973) supports this possibility. Subjects were asked to 
alternate fixation between a clockwise rotating spiral 
located on their right and a counterclockwise rotating 
spiral located on their left. After a few minutes, the spiral 
motion was stopped and subjects reported a counter- 
clockwise motion after-effect for the right spiral and a 
clockwise motion after-effect for the left spiral. Other 
perceptual after-effects might reveal a similar depend- 
ency on eye position. 

Beyond Parietal Cortex 

Although the focus of this paper was on the response 
properties of parietal neurons, our approach can be 
generalized to any cortical area where gain modulation 
of a sensory response by a posture signal has been 
reported. Our basis function framework predicts that 
gain modulation should be found in cortical areas lo- 
cated at the interface between the sensory and motor 
systems. Gain modulation has already been found in 
several cortical areas, in particular the supplementary 
eye field (Schall, 1991), the ventral premotor cortex 
(Boussaoud, Barth, & Wise, 1993), and the parietal area 
7b (Field & Olson, 1994). 

Modulation of visual responses by eye position has 
also been observed in the striate cortex (Trotter et al., 
1992; Weyand & Malpeli, 1993), area V3a (Galletti & 
Battaglini, 19891, parietal area DP (Andersen et al., 
1990a), and even in the lateral geniculate nucleus (La1 & 
Friedlander, 1989), areas in which the receptive fields 
form retinotopic maps. Since Gaussian functions form a 
basis set regardless of their width (Baldi, 1991), our 
hypothesis can be readily extended to early visual areas 
where cells have receptive fields with small widths. As 
we have suggested in a previous study (Pouget, Fisher, & 
Sejnowski, 1993), the smaller size of the visual receptive 
fields in V3a could provide a spatial representation of 
object subparts, whereas area 7a might be more con- 
cerned with whole objects. 

Therefore, the basis function hypothesis might be ap- 
plicable to spatial representations outside of the parietal 
cortex, from the primary visual cortex to the premotor 
cortex (Pouget, Fisher, & Sejnowski, 1993; Pouget & Sej- 
nowski, 1994). 

Appendix 

Part I: The Product of Two Basis Sets Forms a 
Basis Set 

We first demonstrate that if the sets { G ~ ( X ) } F ~ ~  and 
{SJy)}7=0 form complete basis sets, then the set 
{Gi(x)5j(y))T= o, j =  is complete. We use the following 
(Keener, 1988, p. 70, theorem 2.2): 
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Theorem 1 A set {B~(x)};= o is complete 2% if (f; Bk) 
= 0 for all k, then f = 0. 

Where 

Assume that a function f (x ,y )  satisfies 

for all i and j. Then 

Replacing g(y) in Eq. (15) leads to: 

(9, Sj) = 0. 

Since { s ~ } ~ Y ~  is complete,g = 0 and 

if, Gi) = 0. 

Since {G~(x));= a=0 is also complete, then f = O.Therefore, 
we have shown that if if, Gi Sj) = 0 then f = 0. It follows 
that {G~(x) s~(~) } ;=  o , j  = 0 forms a basis set. 

Part 2: Necessary Conditions for Basis Functions 

We show that any set that does not satisfy the two 
conditions in the section on "Response Properties Re- 
quired by Basis Function Representations" cannot form 
a basis set. The first condition states that the selectivities + + to R and E should interact nonlinearly. 

To demonstrate that this is a necessary condition, we 
need to show that no set of the form {aijDi(x) + 
b&(y)};= 0, = is complete, where {aij, bq}T= O J  = 0 is a 
set of fixed coefficients. 

Consider a function f such that (f, aijDi + b&) = 0: 

This expression is true for any f such that: 

Any odd functions in x and y ,  i.e., functions such that 
f(x, y )  = -f(-x, -y), such as exp(-(x + y)') sin (x + y), 
satisfy these two equalities. Therefore, there exists a 
function f, different from the null function, such that 
if, Ei + Hj) = 0, from which we can conclude that the set 
{ E ~  + Hj};= o , j  = 0 is not complete. 

A set of functions composed of two sets of functions, 
one from functions of x only and the other from func- 
tions of y only, {{Di(x))~= 0, {Hi@));= o} is a subcase of 
the previous case. 

Consequently {{Di(x)}~= 0, {Hi(y)};= o} cannot form a 
basis set. This implies that a representation in which -+ + 
units represent R and E with distinct neuronal popula- 
tions does not contain a basis set. 

We now turn to the second condition, in which the 
visual receptive fields as well as the gain fields should 
be nonlinear functions of %?and Ef 

To demonstrate that this is a necessary condition, we 
need to show that if response functions of parietal neu- + + 
rons are linear in R and E, they cannot form a basis set. 
If the tunings are linear, the response function can be 
only of the form: 

Consequently, a linear combination of such functions 
can be used to approximate polynomial of second de- 
gree only ( eg ,  f(x) = a + bx + cx2, in 1-D), which is a 
restricted set of nonlinear functions. 

Therefore, a set of functions that do not meet the two 
conditions we have proposed cannot form a basis set, 
from which we can conclude that these two conditions 
are necessary. 
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